新生儿癫痫发作是一种通常遇到的神经系统条件。它们是严重神经障碍的第一个临床迹象。因此,需要快速识别和治疗以防止严重的死亡。在神经学领域中使用脑电图(EEG)允许精确地诊断几种医疗条件。然而,解释EEG信号需要高度专业人员的注意,因为婴儿脑在新生儿期间发育不起。检测癫痫发作可能会妨碍对婴儿的神经认知发展的负面影响。近年来,使用机器学习算法的新生儿癫痫发作检测已经获得牵引力。由于需要在癫痫发作检测的情况下对生物信号进行计算廉价的生物信号,因此本研究提供了一种基于机器学习(ML)的架构,其与以前的模型相当的预测性能,但具有最小级别配置。拟议的分类器在赫尔辛基大学医院录制的尼古尔缉获量的公共数据数据上进行了培训和测试。我们的架构实现了87%的最佳敏感性,比本研究中选择的标准ML型号的6%增加了6%。 ML分类器的模型大小优化为仅为4.84 kB,最小预测时间为182.61毫秒,从而使其部署在可穿戴的超边设备上,以便快速准确,并避免基于云的需求和其他这种穷举计算方法。
translated by 谷歌翻译
基于变压器的神经网络已在许多机器学习领域(包括自然语言处理和计算机视觉)中实现了最新的任务性能。为了进一步提高其准确性,最近的工作探索了动态行为的整合到这些网络中的形式(MOE)层的形式。在本文中,我们探讨了MOE层的引入以优化不同的指标:推理潜伏期。我们介绍了一个名为Planer的新型系统,该系统采用了现有的基于变压器的网络和一个用户定义的延迟目标,并生成了原始网络的优化,稀疏激活的版本,该版本试图满足潜伏期目标,同时保持基线准确性。我们使用变压器-XL网络对两个现实世界的语言建模任务进行评估,并在ISO准确性上实现超过2倍的推理潜伏期降低。
translated by 谷歌翻译
激光间质热疗法(LITT)是一种新型的微创治疗方法,用于烧蚀颅内结构,以治疗肠内颞叶癫痫(MTLE)。 LITT之前和之后的感兴趣区域(ROI)分割将使自动化病变定量能够客观地评估治疗疗效。深度学习技术,例如卷积神经网络(CNN)是ROI分割的最新解决方案,但在培训过程中需要大量注释的数据。但是,从LITT等新兴治疗中收集大型数据集是不切实际的。在本文中,我们提出了一个进行性脑部病变合成框架(PAVAE),以扩大训练数据集的数量和多样性。具体而言,我们的框架由两个顺序网络组成:掩模合成网络和掩模引导的病变合成网络。为了更好地利用外部信息来在网络培训期间提供额外的监督,我们设计了条件嵌入块(CEB)和掩模嵌入块(MEB),以将掩模的固有条件编码到功能空间中。最后,使用原始和合成病变图像对分割网络进行训练,以评估所提出的框架的有效性。实验结果表明,我们的方法可以实现逼真的合成结果,并在传统数据增强技术之上提高下游分割任务的性能。
translated by 谷歌翻译
移动通知系统在各种应用程序中起着重要作用,以通信,向用户发送警报和提醒,以告知他们有关新闻,事件或消息的信息。在本文中,我们将近实时的通知决策问题制定为马尔可夫决策过程,在该过程中,我们对奖励中的多个目标进行了优化。我们提出了一个端到端的离线增强学习框架,以优化顺序通知决策。我们使用基于保守的Q学习的双重Q网络方法来应对离线学习的挑战,从而减轻了分配转移问题和Q值高估。我们说明了完全部署的系统,并通过离线和在线实验证明了拟议方法的性能和好处。
translated by 谷歌翻译
如今,基于Web的网络钓鱼攻击可利用流行的云网络托管服务和Google站点等应用程序和用于托管攻击的类型。由于这些攻击源自云服务的信誉良好的域和IP地址,因此传统的网络钓鱼检测方法(例如IP声誉监视和黑名单)不是很有效。在这里,我们研究了深度学习模型在检测这类基于云的网络钓鱼攻击方面的有效性。具体而言,我们评估了三种网络钓鱼检测方法的深度学习模型 - 用于URL分析的LSTM模型,用于徽标分析的YOLOV2模型和用于视觉相似性分析的三重态网络模型。我们使用知名数据集训练模型,并在野外基于云的网络钓鱼攻击上测试其性能。我们的结果定性地解释了为什么模型成功或失败。此外,我们的结果突出了各个模型的结果如何提高检测基于云的网络钓鱼攻击的有效性。
translated by 谷歌翻译